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Abstract 

A new expression is proposed for the relationship 
between lattice strain 90 ° -  ape (ape: pseudo-cubic 
angle) and mean BO6 octahedral tilt angle <w> in 
rhombohedral perovskites AB03. It is derived from 
volumetric arguments, leading to a cubic equation which 
incorporates lattice strain 90 ° -  C~p~ and octahedral 
elongation explicitly. Numerical solutions of this 
equation are derived for equally spaced values of 
octahedral strain, giving rise to a set of parametric 
curves which relate w to 90 ° - ap~ for different values 
of 7/. These curves can be represented as polynomials of 
the fourth degree, thereby enabling their routine use in 
the analysis of rhombohedral perovskite structures. It is 
anticipated that these parametric curves will supersede 
earlier work [Megaw & Darlington (1975). Acta Cryst. 
A31, 161-173], in which an analytical expression was 
derived linking 90 ° -  ape, a; and octahedral strain 
for positive lattice strains only. By comparison, the 
relationship proposed here accommodates both negative 
and positive lattice strains. Correlations between values 
of <w>, ~7, 90 ° -  ape and space-group symmetry are 
found, with an analysis of known rhombohedral and 
orthorhombic Pnma structures revealing the importance 
of cationic charges in determining symmetry. Since the 
polyhedral volume ratio VA/Vs may be quantitatively 
related to <~.,>, allowed values of tilt angle, lattice strain 
and octahedral elongation may be inferred for a given 
composition, which has characteristic values of VA and 
vs. 

1. Introduction 

The relationship between lattice strain and octahedral 
tilt angle in rhombohedral perovskites, AB03, has been 
the subject of two previous studies. In the first of 
these (Michel, Moreau & James, 1971), the structures 
of perovskites in space group R3c were modelled, with 
the assumption of rigid BO6 octahedra. This permitted 
the octahedral tilt angle a; to be related to departures of 
the rhombohedral angle t2rh from 60 ° to lower values. 
The second study (Megaw & Darlington, 1975) extended 
the structural parameterization to include deviations of 
the BO6 octahedra from regularity. Two possible com- 
ponents were identified: (i) differences in facial areas 
of the two octahedral triangular faces perpendicular to 
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the triad axis; (ii) elongations or compressions of the 
octahedra parallel to this axis. 

The inter-relationship of rhombohedral, hexagonal 
and pseudo-cubic axes was also articulated in the paper 
by Megaw & Darlington (1975), from which Fig. 1 
is reproduced. Although the conventional unit cell for 
rhombohedral perovskites in space groups R3c and R3c 
has a rhombohedral angle close to 60 °, it was found 
expedient to utilize a pseudo-cubic rhombohedral cell 
instead, for which C~p~ _~ 90 °. These authors went on to 
derive the following relationship between pseudo-cubic 
rhombohedral angle C~pc and tilt angle ,: 

cos C~pc = [sin2~/(3 - 2sin2~)] 

+ {(2/3)(/[1 - (2/3)sin2,;]}. (1) 
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Fig. 1. Relationship between hexagonal (dashed), pseudo-cubic 

(dot-dash) and primitive rhombohedral (dotted) unit cells. 
Projection is down the triad axis: heights are in units of CH/12. Small 
black circles are lattice points for R3c and R3c, corresponding to 

corners of a rhombohedral unit cell with n close to 60 °: small open 
circles are octahedral centres forming corners of a pseudo-cubic 
rhombohedral unit cell with n close to 90 °. Large open circles are 
O atoms, forming a slightly distorted octahedron about the B cation 
situated nearest the origin (courtesy of Megaw & Darlington, 1975). 
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where ( represents octahedron strain parallel to the triad 
axis. Elongated octahedra would have ( > 0 ,  with 
values less than zero signifying compression. The form 
of this variation is plotted in Fig. 2, for the case of 
unstrained octahedra ((  = 0). The concept of a lattice 
strain, 90 ° - ape, is introduced in the figure, representing 
the extent of the deviation of the pseudo-cubic angle 
C~p~ from 90 °. Whereas the solid line has a theoretical 
basis in the first term in (1), this is not the case for 
the dashed line, which has been constructed empirically 
from experimental points 4, 5, 6 and 7. 

The aim of the present paper is to re-examine the 
relationship between w and O~pc for rhombohedral per- 
ovskites. In particular, the theoretical dependence of 

on 90 ° -  Olpc will be derived for negative lattice 
strains, thus replacing the empirical curve of Megaw 
& Darlington (1975). It will be seen that the predicted 
dependence is at variance with their empirical curve (Fig. 
2). 

2. Derivat ion of  relat ionships between octahedral  
tilt angle  w, lattice strain 90 ° - t~pc and octahedral  

strain r/ 

2.1. Equation linking apc and cn/aH 

The pseudo-cubic rhombohedral angle C~pc is related 
to the volume of the pseudo-cubic cell by the following 
variation (see, for example, Hammond, 1990) 

Vu.pc = a~c(1 - 3COS20~pc + 2COS30~pc) 1/2, (2) 

where apc is the pseudo-cubic cell constant. As shown 
in Fig. 1, lattice points of the pseudo-cubic cell are at 

a height CH/3, with their projections in the XhYh plane 
at distances 2all~31/2 from the origin. Furthermore, the 
volume of the pseudo-cubic cell is 4/3 the volume of 
the hexagonal unit cell,* i.e. 

[(2aH]31/2) 2 + (CH]3)213/2(1 -- 3COS2~pc + 2COS3(epc) I/2 

= 4Vu.H/3. (3) 

Since V u .  H = a2ctt31/2/2, it follows that 

(1 - 3cos2O~pc + 2cos3O~pc)I/2 

= 2a2CH/{31/2[(2aH/3U2) 2 + (CH/3)213/2}, 

which simplifies to 

1 - 3cos 2o~P~ + 2cos 3 o~p~ = 36aacZH/(4a2H + C2H/3) 3. (4) 

Of particular interest here is the ratio CH/aH, since this 
has a direct bearing on the octahedral strain parallel to 
the triad axis. Let this ratio be denoted by r, so that (4) 
becomes 

1 - 3cos2O~pc + 2cos3(2pc  = 36r2/(4 + r2 /3)  3. (5 )  

2.2. Solution of  equation (5) 
The value of r for any given value of o~pc is calculated 

by evaluating the left-hand side of (5) and representing 
the result as A. Thus, A(4 + x/3) 3 = 36x, where x = r 2. 
On expansion and rearrangement this becomes 

(A/27)x 3 + (4A/3)x 2 + (16A - 36)x + 64A = 0. (6) 
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Fig.. 2. Tilt angle ~ versus lattice strain 90 ° -  o .  Solid cir- 
cles are experimental points fu. .he following compounds: 
(1) BaTiO3 (183 K); (2) KNbO3 (230 K); (3) Pb(Zr0.58Ti0.42)O3; 
(4) LaAIO3; (5) PrAIO3; (6) BaTbO3; (7) LaCoO3; (8) and 
(8a) Pb(Zro.9oTi0.10)O3; (9) BiFeO3; (10) NaNbO3 (N phase); 
(11) LiTaO3; (12) LiNbO3. The full line, for 90 ° - o >0 ,  is given 
by the first term in equation (1), i.e. when uctahedron strain ( = 0. 
The dashed line is an empirical curve, constructed by reflecting the 
full line at 90 ° - a (courtesy of Megaw & Darlington, 1975). 

* This can also be inferred from the observation that ZH = 6, whereas 
Zpc = 8. 
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Fig. 3. Variation of  axial ratio r = cn/aH with lattice strain, 90 ° -- (~pc, 
as predicted by equation (5). 
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Equation (6) can be solved numerically, by means of 
an appropriate algori thm.* Only one of  the three roots 
of x obtained for a given value of A corresponds to 
the physically correct solution. Since r = x I/2, any 
solution for x must be real and positive. Further criteria 
for selecting the correct root depend on the value of 
C~pc, which affects the ratio of  the c .  and a .  parame- 
ters directly. When &pc = 90 °, r =  CH/a. = 6 I/2 and x =  6; 
when & p c < 9 0  ° ,  r=ct t /aH>6 I/2, so that x > 6 ;  when 
O~pc > 9 0  ° ,  r = c H / a . < 6  I/2, so that x < 6. 

The computed variation of r with lattice strain 
90 ° -- O~pc is shown in Fig. 3, for values of  90 ° - C~pc 
between - 3 0  and +30 °. For 90 ° - & = - 3 0  °, i.e. 
O~p~- 120 °, r =  0, in agreement with a unit-cell volume 
of zero, as predicted by (2). For 90 ° -  Cepc = +30 °, 

* For example, NAG Fortran Subroutine Library, routine C02AEF 
NAG Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, 
England. 

r = 2 ( 6 )  1/2, with r = 6  I/2 when 90 ° -C~pc=0.  It is 
to be noted that the variation of r with 90 ° -  c~pc 
approximates to a straight line in the region near 
90 ° -  ~p,: = 0. The best-fit straight line for 90 ° -  c~p~ 
values in the range - 8  to +8 ° has been determined to be 
rl6 I/2 = 1.0036 + 0.026418(90 ° - c~pc). A more accurate 
quadratic fit gives r]6 I/2 = 1.0000+0.026358(90  ° - 
C~pc) + 0.00011333(90 ° - O~pc) 2.  (Residuals for these fits 
from the NAG routine E02ACF amount to 0.00369 and 
0.00048, respectively.) 

2.3. Dependence of  aH on octahedral tilt angle, 

A parameterization for quantifying octahedral tilt 
angles in rhombohedral perovskites has been previously 
defined by the author (Thomas & Beitollahi, 1994). 
Tilting is shown in Fig. 4(a) for the simplified case 
where all octahedral edge lengths are equal and in Fig. 
4(b) for the general case of unequal edge lengths. In this 
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Fig. 4. (a) Projections of the 
rhombohedral perovskite structure 
viewed along the z direction 
in hexagonal axes: (i) ~: = 0 ° ;  
(ii) ..' = 15°; (iii) ~ = 30°; (iv) 
~' = 45 °. The triangles represent 
co-planar faces of the BO6 
octahedra, which lie in the x 3' 
plane; A ions are represented 
as circles at the comers of the 
hexagonal unit cell, with the edge 
lengths of all triangles equal. 
In diagrams (ii), (iii) and (iv), 
triangle AGF is rotated by +~" 
about its centre and triangle 
ABH by --~." with respect to the 
0 ° orientations in diagram (i). 
Thus, angle BCD= 120 ° -  2~" 
and ABC= 120 ° + 2.,. The 
structure depicted in diagram 
(iv) is not found in practice, 
since this is associated with 
concave A-ion coordination poly- 
hedra (ABCDEF, in projection). 
Thus. there is an upper limit of 
,~'= 30 ° , as shown in diagram 
(iii). (b) Sketch of the structure 
for an arbitrary tilt angle, with 
BO6 octahedra of unequal edge 
lengths. The straight line XYZ (of 
length equal to the lattice constant 
all) links mid-points of the sides 
of three triangles with the angles 
within triangle XYC defining tilt 
angles c~ and 3, such that <~> = 
(n + 3)/2. 
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earlier work it was found expedient to use the equation 
aH= 2Kscos <w> to relate aH with the mean octahedral 
edge length s (in planes such as in Fig. 4b, perpendicular 
to the threefold axis) and mean tilt angle <w>. The latter 
is derived by calculating values of angles A B C  and BCD 
in Figs. 4(a) and (b), such that <w> = ( A B C -  BCD)/4. 
It was found by examination of experimental  crystal 
structures that the parameter K could be taken as 1.0000, 
to an excellent approximation, i.e. 

aH= 2SCOS < ~ >.  (7) 

2.4. The influence o f  octahedral strain on cH 

The term 'octahedral strain' has a restricted interpre- 
tation, either as an elongation or as a flattening of the 
octahedra in the direction parallel to the threefold axis 
(Megaw & Darlington, 1975). It is not to be confused 
with the existence of unequal octahedral edge lengths in 
planes perpendicular to the trigonal axis, as in Fig. 4(b). 
In the special case of regular octahedra (i.e. all edges 
of equal length), it may be shown that h = (2/3)~/2s, 
where s is the octahedral edge length and h the face- 
to-face height along a threefold axis.* In the general 
case, therefore, h may be made equal to (2/3)]/2s~7. When 
r / >  1, an octahedron is elongated, whereas a flattened 
octahedron would have r/ < 1. Note that r/ = 1 + ( ,  
the parameter ff having been introduced by Megaw & 
Darlington (1975) to denote octahedron strain. It follows 
from the geometry of the hexagonal  unit cell that CH = 
6h, i.e. 

CH = 2(6)]12S~7. (8) 

2.5. Derivation o f  the relationship between <w>, 
90 ° - o~pc and ~7 

Equations (7) and (8) may be combined to give 

r= cHlaH = 61/2771COS < co >.  (9) 

Substitution of this result for r in (5), together with 
the notation (5 = 90 ° -  O~pc for lattice strain, gives the 
following result 

1 - 3sin2(Spc + 2sin3(Spc 

= 27r/2cos 4 < co > / ( 2 c o s  2 < w > +/.]2)3. (10) 

The validity of this equation may be checked by con- 
sidering the particular case of 77 = 1. For all physical ly  
meaningful  values of <w> (i.e. <w> < 30°), the right- 

* A number of methods may be used to derive this result, for example, 
one based on octahedral volumes. A regular octahedron has the same 
volume as two square pyramids, each of volume ½Ad, where A is base 
area and d pyramidal height. Since A = s 2 and d = s/21/2, octahedral 
volume Voct = 21/2s3/3. The dependence of h on s is derived from the 
result that the volume of an octahedron is also equal to 31/2d/12 (A + 
B) 2, where A and B are edge lengths of two parallel faces and d their 
separation (Thomas & Beitollahi, 1994). For a regular octahedron, 
A = B = s and d= h, so that Voct = hs2/31/2. Equating this to 21/2s3/3 
leads to the required result. 

hand side is less than one, implying,  from a consideration 
of the left-hand side, positive values of 6pc. This can 
be interpreted geometrical ly as follows: any tilting of 
the octahedra leads to contraction of the hexagonal  a 
axis and a reduced relative projected area of the AOI2 
coordination polyhedron. Since the length of the c axis is 
unaffected by the tilting, however,  C~pc < 90 ° and 6pc = 
90 ° - c% > O. 

2.6. Solutions o f  equation (10) 

Equation (10) indicates that lattice strain 6pc is a 
function of both octahedral tilt angle <w> and octahe- 
dral strain 77. Thus, solutions of this equation are best 
represented by a set of parametric curves for different 
r /values .  In order t o  derive these curves, the following 
procedure has been adopted. 

Values of r were computed for equally spaced values 
of 6pc between - 8  and +8 °, by use of (5). For each 
value of r, a set of 21 values of <w> was calcu- 
lated, corresponding to equally spaced octahedral strains> 
77= 0.95, 0.955, 0.960 ..... 1 ..... 1.05. Since, from (9), 
<w> = cos-i(6il2~T/r), values of 6]lerl/r greater than one 
give no solution for <w>. Eleven of these parametric 
curves are shown in Fig. 5, with small squares represent- 
ing the experimental ly determined perovskite structures 
analysed in a previous article (Thomas & Beitollahi, 
1994). 
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Fig. 5. Parametric curves representing the dependence of <~'> on 
90 ° - ape for equally spaced values of between 0.95 and 1.05. The 
small squares, which represent experimental structures previously 
analysed (Thomas & Beitollahi, 1994), correspond to the following 
compositions: (a) PrA103; (b) Pb(ZrxTil_x)O3 R3m structures; 
(c) Pb(Zr0.75Ti0.25)O3 R3c structures; (d) Pb(Zr0.9Ti0.1)O3 R3c 
structures; (e) LaCuO3; Or)NdAIO3 (two structures); (g)LaCoO3 
(six structures; 4-1248K); (h) NaNbO3 (123K); (i)BiFeO3; 
fj) HgTiO3; (k) LiReO3; (1)LiTaO3; (m) LiNbO3; (n)LiUO3. 

The horizontal dashed line represents the upper limit for physically 
realistic <,~'> values (see Fig. 4a). The vertical dashed line, which 
passes thrdugh 90 ° - c~pe = 0, separates non-polar structures on its 
left-hand side from polar R3c to its right. R3m and R3m structures, 
for which <~-'> = 0, lie on the horizontal axis. All points for R,% 
and R3c structures, which have tilted octahedra, are displaced from 
this axis. 
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Table 1. Values of  polynomial coefficients aij to be substituted in equation (11) 

Subscript  S u b s c r i p t j  

i 0 1 2 3 

0 - 0 . 3 8 8 5 9 4 9  x 10 +2 0.3383511 x 10 +2 0 .1071185 x 10 ÷2 - 0 . 5 6 8 7 3 4 5  x 10 +l 

1 0 .8425441 x 10 -2 - 0 . 2 7 4 6 0 4 4 x  10 - l  0 .2824460  x 10 -1 - 0 . 9 4 3 2 6 1 2  x 10 -2 

2 - 0 . 5 8 8 4 7 1 8  x 10 -2 0 .2337373 x 10 - l  - 0 . 1 5 1 7 8 0 3  x 10 -1 0.3561531 x 10 -2 

3 0 .1171594 x 10 -3 - 0 . 3 9 5 4 8 0 8  x 10 -3 0 .4120467 x 10 -3 - 0 . 1 3 8 2 0 5 5  x 10 -3 

4 - 0 . 2 6 1 8 2 1 5  x 10 -5 0 .1060686 x 10 -4 - 0 . 1 0 6 2 9 0 5  x 10 -4 0.3358051 x 10 -5 

2.7. Polynomial representations of  the parametric 
curves 

Although the parametric curves in Fig. 5 are exact, 
their practical application requires expression in a form 
which does not require numerical solution of (5), which 
is a cubic equation. To this end, polynomials of the form 
y = A + Bx + Cx 2 + Dx 3 + Ex 4 have been fitted to 
the curves,* where y corresponds to 90 ° - Oepc and x to 
<co>. The choice of a polynomial of degree 4 permits an 
acceptably good fit to the accurate curves of Fig. 5. Since 
the values obtained for coefficients A to E were found 
to vary monotonically with r/, it was possible to derive 
further polynomial expansions for these coefficients in 
terms of r/.* This latter procedure was carried out by 
calculating values for each of A, B, C, D and E for 21 
equally spaced values of between 0.95 and 1.05. These 
were subsequently used to derive cubic polynomials with 
~/as the independent variable. Thus, the full expression 
is as follows 

j = 3  4 3 

90 ° - -  O~pc = ~ aoj ~ j + ~-~ ( ~-~ aij ~ j) < co >i 

j = 0  i =  I j = 0  

(0.95 _< 71 <_ 1.05). (11) 

The values of coefficients aij are given in Table 1, 
with the curves predicted by (11) plotted in Fig. 6 for 
0 _< <co> _< 30 °. 

* NAG Fortran Subroutine Library, routine E02ACF. 
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Fig. 6. Parametric curves derived from equation (11) with values of 
the polynomial coefficients given in Table 1. 

3. Discussion 

The set of parametric curves in Fig. 5 represents the 
variation of <co> with lattice strain, 90 ° - or, for different 
octahedral strains, 7/. The analytical model of Megaw 
& Darlington (1975), obtained without the assistance 
of a digital computer, gave rise to a single curve only 
(Fig. 2), corresponding to 7/ = 1. Agreement between 
their curve and the 7/= 1 curve of Fig. 5 is excellent for 
positive 90 ° - Crpc values, to which their analysis refers. 
However, their construction of an 'empirical curve' for 
negative 90 ° - C~p~. values, obtained by reflection of the 
positive branch about 90 ° - Ctp~. = 0, is incorrect. 

It is seen in Fig. 5 that a value of 7/of less than one 
is required for a given curve to pass through the region 
to the left of the y axis, in which C~pc > 90 °. Therefore, 
negative lattice strains (i.e. c~pc>90 °) can only occur 
with compressed octahedra (i.e. 71 < 1). A further correla- 
tion is found by considering the experimental structures: 
those compositions with points to the right of the y axis 
crystallize in space groups R3m and R3c, the two polar 
space groups. Thus, any rhombohedral perovskite which 
is ferroelectric will have a pseudo-cubic rhombohedral 
angle which is less than 90 ° . Conversely, all structures 
with points to the left of the y axis exist in the non-polar 
space groups R3m and R3c.* As discussed previously 
(Thomas & Beitollahi, 1994), R3c symmetry allows 
both octahedral tilting and unequal octahedral face areas 
perpendicular to the trigonal axis (Fig. 4b). The B ions 
are displaced towards the larger faces in polar structures. 
Freedom in the value of 71 is allowed, for example, this 
being less than one in BiFeO3 and significantly greater 
than one in LiUO3. 

The relationship between ionic sizes and tilt angle 
<co> in rhombohedral perovskites has been shown to cor- 
respond to the following equation (Thomas & Beitollahi, 
1994) 

VA / VB = 6cos 2 < co > - 1. (12) 

Here, VA/V8 is the ratio of the volume of the AX]2 
coordination cuboctahedron to that of the BX6 octahe- 
dron, for a perovskite of general composition ABX3. It 
has also been found that cations tend to adopt char- 
acteristic polyhedral volumes (Thomas, 1996). Thus, 

* S p a c e  g r o u p s  R3m and  R3m have  po in t s  l oca t ed  on the x axis ,  s ince  
no octahedral tilting is permitted. By comparison, structures in space 
groups R3c and R3c are represented by off-axis points, since their BO6 
octahedra are tilted (Thomas & Beitollahi. 1994). 
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to a good approximation, possible points for a given 
composition ABX3 will lie somewhere on a horizontal 
line in Fig. 5, of fixed <co> and therefore VA/V8 value, its 
vertical height dictated by the sizes of A and B cations. 
In order to make the interdependence of <co> and VA/V#~ 
explicit, the latter may also be plotted against 90 ° - cep~ 
(Fig. 7), through the application of (11). It is seen that 
the parametric curves approximate to straight lines. 

In structures with untilted octahedra, VA/VB = 5, 
falling to lower values as the tilt angle increases. How- 
ever, a system with tilted octahedra does not necessar- 
ily have rhombohedral symmetry, since orthorhombic 
or tetragonal structures are also possible, for which 
VA/VB=6CoS2OmCOSO: -- 1 (Thomas, 1996). Here, Om 
and 0- are tilt angles defined relative to pseudo-cubic 
axes. Owing to this variation in octahedral tilt system, 
it is therefore appropriate to utilize the VA/VB ratio as 
an indicator of the degree of tilting, applicable to all 
perovskite structures, regardless of symmetry. 

A mapping of known perovskite structures in space 
groups R3c, R3c and orthorhombic Pnma is given in Fig. 
8, with VA/VB falling from 5 to 4 (i.e. tilting increasing) 
on the vertical axis and a division into three columns 
according to cationic charges, A3÷B3+O313,3] ,  A2+B4+O3 

[2,4] or A÷Bs+O3 [1,5]. Compressed octahedra (space 
group R3c) are found only for [3,3]-perovskites with 
VA/VB values closest to 5. Within the [3,3] column, at 
VA/V8 ~-- 4.8, there is a transition to an R3c structure 
(BiFeO3), with 71 ~ 0.990. An R3c structure of iden- 
tical VA/VB would have more compressed octahedra, 
i.e. ,,~ 0.975. A further reduction in VA/VR to 4.7 is 
associated with a change to orthorhombic symmetry 
(space group Pnma). Such an orthorhombic structure is 
to be regarded as an alternative to stabilization within 
a rhombohedral polar phase (space group R3c), which 
can tolerate smaller VA/VB values than its non-polar 
counterpart R3c (Fig. 7). The stabilization of NdA103 
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-2 -1 0 l 2 3 4 5 6 7 8 
R h o m b o h e d r a l  la t t ice d i s t o r t i on ,  90 ° -c~p, 

Fig. 7. Predicted relationship between VAlVe and 90 ° -  ape for 
equally spaced values of q between 0.95 and 1.05. The small squares 
correspond to experimentally determined structures, as defined in 
Fig. 5. 

and BiFeO3 (points a and b in Fig. 8) in space group R3c 
is probably best interpreted as a 'transitional symmetry' 
between R3c and Pnma. In adopting R3c symmetry, the 
octahedral compression need not be as severe as would 
be the case in space group R3c. It is also to be noted 
that the structure of NdA103 has also been solved in 
space group R3c (point e), supporting the notion that R3c 
symmetry is only transitional for [3,3]-perovskites. The 
R3c-Pnma changeover is also of technological relevance 
to the current generation of ceramic fuel cells, which 
employ [3,3]-perovskites (Thomas, 1996). 

As discussed previously (Thomas, 1996), orthorhom- 
bic Pnma structures are characterized by closely coor- 
dinated B ions, with A ions displaced off-centre in an 
oversized AO12 environment. In LuFeO3, for example, 
the Lu 3÷ ions are displaced by 0.4930 * from their 
polyhedral centres, permitting a larger value of VA than 
would otherwise be the case without this displacement. 
The corresponding energetic advantage of a larger AO~ 2 
polyhedron is a minimization of unfavourable O . . .O  
repulsions, which is clearly more important in [3,3]- 
perovskites than the adoption of an alternative, polar 
rhombohedral structure. This inference suggests that the 
dipole moments in [3,3]-perovskites are too weak to 
give rise to a strong dipolar contribution to the lattice 
energy. Indeed, there is evidence for a stronger dipolar 
contribution in [2,4]-perovskites, since structures with 
VA/V8 close to 5 [i.e. Pb(ZrxTil_x)O3 compositions] have 
polar R3c in preference to non-polar R3c symmetry. 

[3.3] [2. 4] [1.5] 
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Fig.  8. VA/VB-Cation charge [ZA,ZB]-symmetry co r re la t i ons  fo r  
k n o w n  pe rovsk i te  s t ruc tures w i t h  t i l t ed  octahedra.  S t ruc tu res  have  
been determined at room temperature, except where otherwise 
indicated, with VA/VB values calculated previously (Thomas 
& Beitollahi, 1994; Thomas, 1996). Space-group symmetry 
is denoted by the following symbols: I-1: rhombohedral R3c; 
+: rhombohedral R3c; x: orthorhombic Pnma. Structures are 
represented by alphabetical characters as Ibllows: (a) NdAIO3; 
(b) BiFeO3; (c) PrAIO3; (d) LaCuO3; (e) NdAIO3; Of) LaCoO3 
(six structures; 4-1248K); (g) SmAIO3; (h) LaFeO3; (i) (in 
descending VA/V8 ratio) NdFeO3, HoNiO3, PrFeO3, SmNiO3, 
PrFeO3 and YAIO3; (j) lanthanide ferrites, LnFeO3, from SmFeO3 
(VA/VB = 4.362) to LuFeO3 (VA/V8 = 4.060); (k) Pb(Zr0.75Ti0.25)O3; 
(l) and (m) Pb(Zr0.9Ti0.1)03; (n) HgTiO3; (o) BaPrO3; (p) BaCeO3; 
(q) SrZrO3; (r) CaTiO3;(s) MgSiO3 at various hydrostatic 
pressures: VA/VB = 4.284 at 0 GPa (Horiuchi, Ito & Weidner, 
1987) to 4.195 at 9.6 GPa (Kudoh, Ito & Takeda, 1987); (t) KNbO3; 
(u) NaNbO3 (123 K); (v) LiReO3; (w) LiTaO3, LiUO3; (x) LiNbO3. 
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Calculations of electrostatic energy for rhombohedral 
BiFeO3 and Pb(Zr0.9Ti0.1)O3 also support this conclusion 
(Thomas & Beitollahi, 1994). 

Within the [2,4]-column, there is again a transi- 
tion to orthorhombic Pnma at lower VA/V8 ratios, with 
the exception of HgTiO3 (point n). Here, the adoption 
of rhombohedral symmetry is probably related to the 
unique coordination chemistry of mercury, in which 
three short bonds are formed with oxygen ions (Sleight 
& Prewitt, 1973). MgSiO3 is the [2,4]-perovskite with 
the smallest VA/V8 ratio, this being an important min- 
eral within the Earth's mantle. Upon application of 
hydrostatic pressure, VA/V8 falls from 4.284 at 0GPa 
(Horiuchi, Ito & Weidner, 1987) to 4.195 at 9.6GPa 
(Kudoh, Ito & Takeda, 1987). Thus, EuFeO3, with 
its VA/V8 ratio of 4.324, would be a [3,3]-analogue 
of MgSiO3 at 0 GPa. The corresponding analogue of 
MgSiO3 at 9.6GPa would be HoFeO3, with a VA/V8 
ratio of 4.187. It follows that larger pressures can be 
simulated chemically by exploiting the lanthanide con- 
traction. For example, LuFeO3 has the smallest VA/V8 
ratio of 4.060. This is equivalent to the polyhedral 
volume ratio MgSiO3 would be expected to have at a 
pressure of approximately 24 GPa, assuming a linear 
extropolation of the variation of VA/V8 with pressure 
between 0 and 9.6 GPa. Such lanthanide ferrites (points 
j in Fig. 8) would, therefore, be of use in laboratory 
simulations of MgSiO3 as it occurs in the Earth's mantle, 
at hydrostatic pressures of the order 20 GPa. Deforma- 
tion experiments at high temperatures and pressures of 
MgSiO3 and its lanthanide ferrite analogues would thus 
be of considerable mineralogical interest. 

All [1,5]-perovskites are stabilized in polar phases 
R3m and R3c, pointing to the significant dipole-dipole 
contribution to the lattice energy. It is to be noted that 
KNbO3 and NaNbO3 are unstable against polymorphic 
phase changes. In the case of. KNbO3, ferroelectric 
phases of orthorhombic and tetragonal symmetry are 
stabilized at higher temperatures. Point u in Fig. 8 refers 
to NaNbO3 in its rhombohedral structure at 123 K. 

However, this compound is richly polymorphic, show- 
ing six alternative symmetries (Thomas, 1996). The 
room-temperature structure has the orthorhombic space 
group Pbcm, with significant displacements of A and 
B ions from their polyhedral centres (Thomas, 1996). 
These, together with the observed antiferroelectric prop- 
erties, provide further evidence of the importance of 
dipole-dipole interactions in determining the structures 
of [1,5]-perovskites. LiNbO3 has the minimum VA/V8 
ratio of 4.065 and, in contrast to KNbO3 and NaNbO3, 
is stable against polymorphic modifications. It undergoes 
a straightforward transition to non-polar R3c symmetry 
at the very high Curie point of 1483 K. 

In general, considerations of ionic charge and the 
structural geometry resulting from different ionic sizes 
are sufficient to rationalize the symmetries of the 
structures adopted by different compositions. Exceptions 
to this generalization are found in compositions 
with strong dipole-dipole interactions or particular 
coordination chemistries (as for oxygen-coordinated 
Zr 4÷, Pb 2+ and Hg 2+ ions, for example). Here, there is 
a strong tendency towards polymorphism. Further work 
is required to understand the delicate energy balances 
between the alternative modifications. 
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